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Abstract. Various approaches to software analysis (e.g. test input gen-
eration, software model checking) require engineers to (manually) iden-
tify a subset of a module’s methods in order to drive the analysis. Given a
module to be analyzed, engineers typically select a subset of its methods
to be considered as object builders to define a so-called driver, that will
be used to automatically build objects for analysis, e.g., combining them
non-deterministically, randomly, etc. This requires a careful inspection
of the module and its API, since both the relative exhaustiveness of the
analysis (leaving important methods out may systematically avoid gen-
erating different objects), as well as its efficiency (the different bounded
combinations of methods grows exponentially as the number of methods
increases), are affected by the selection.
We propose an approach for automatically selecting a set of builders
from a module’s API, based on an evolutionary algorithm that favors
sets of methods whose combinations lead to producing larger sets of
objects. The algorithm also takes into account other characteristics of
these sets of methods, trying to prioritize the selection of methods with
less and simpler parameters. As the implementation of this evolutionary
mechanism requires in principle handling and comparing large sets of
objects, and this grows very quickly both in terms of space and running
times, we employ an abstraction of sets of objects, called field extensions,
that involves using the field values of the objects in the set instead of the
actual objects, and enables us to effectively implement our mechanism.
An experimental assessment on a benchmark of stateful classes shows
that our approach can automatically identify sets of builders that are
sufficient (can be used to create any instance of the module) andminimal
(do not contain superfluous methods), in a reasonable time.

1 Introduction

As software is becoming more ubiquitous thanks to the rapid advances in tech-
nology, guaranteeing the functional correctness of software is more crucial than
ever. Thus, a research area of growing importance is that of automated soft-
ware analysis, whose goal is to assist engineers, through the provision of tools



for automated analysis, in finding deficiencies both in software and software re-
lated models. Automated test generation [25, 29, 1, 11, 17, 28, 13, 32, 24], software
model checking [35, 34, 9], and static analyses [6, 16], among many others, are
prominent approaches in this line of research.

While these techniques involve in many cases fully automated analyses, their
application often requires some effort from the engineers. Software model check-
ers rely on the definition of drivers, programs that allow one to build inputs for
the code under analysis. Similarly, in parameterized-unit testing approaches [33]
a mechanism for building inputs is mandatory. Some symbolic execution based
tools require the so-called “object factories” to build tests cases involving inputs
with non-primitive types [32]. Automated test generation techniques based on
a module’s API can be used for building inputs for non-primitive types [24, 11],
thus automating the above-mentioned input-generation issues. But they usually
present difficulties in generating a good set of diverse inputs for stateful, complex
structures. This is even more difficult for structures with rich APIs [26]. Many
authors have addressed this problem by defining different approaches for guiding
test generation, to create more diverse sets of inputs [26, 7].

In this paper, we take a different approach to address the problem of gener-
ating better inputs for stateful modules. We observe that the selection of rou-
tines from a module API, to feed an input generation tool so as to build input
structures for program analysis (drivers for model checking, input structures for
parameterized unit tests, etc.), has a crucial impact on the analysis. We call
builders a set of routines B, drawn from a module’s M API, that can be em-
ployed to create input structures in an automated program analysis for M (e.g.
a driver for model checking). Clearly, the higher the number of different struc-
tures that can be created with B, the better the chances to find bugs in M .
As the number of instances of a software module is potentially infinite, and the
program analyses we target are also limited in the number of structures they can
employ, we limit ourselves to a bounded-exhaustive set of structures for M [4]
(e.g. all the instances of a linked list with up to k nodes). We denote this set by
BE(M,k). We say that a builders are sufficient if they can combined to build all
the instances in BE(M,k). Thus, sufficient builders are the best possible choice
for bug finding (in a bounded setting). Notice that B can contain superfluous
routines. A superfluous routine s is such that BE(M,k) can be built using rou-
tines in B − {s} (the simplest example being routines that never change the
state of their parameters). These routines provide no benefits in terms of bug
finding capabilities of the analysis. We call minimal a set of builders with no
superfluous routines. Minimality is important because providing an analysis tool
with superfluous routines often negatively impacts its efficiency (the number of
ways k routines can be combined usually increases exponentially with k).

Manually selecting sufficient and minimal builders is not an easy task: it
requires a thorough analysis of the available routines and a deep understanding
of the program semantics. This is especially hard for programs with rich APIs,
where there are many routines and a lot of redundancy in the API (see Section 2).
We propose an automated approach for identifying such a sufficient and minimal



set of builders, based on an evolutionary algorithm that searches for a minimal
set of routines that is capable of generating the maximum number of different
(bounded) objects (i.e., BE(M,k)). Moreover, our evolutionary approach also
takes into account other characteristics of the builders, such as the number and
complexity of their parameters, so that “simpler” routines are favored in the
search. The goal is to choose builders that can be more easily and more efficiently
used by the subsequent program analyses.

The fitness value for a set of routines R is based on the number of bounded
structures that can be generated using combinations of these routines. To com-
pute the fitness we use a modified version of a random test case generation tool
(Randoop [24]) to generate as many bounded structures as possible from R, al-
lowing at most k of objects of each type in the structures (a parameter to our
algorithm). As sets of objects are very expensive to maintain and manipulate,
both in terms of space and running time, we employ an efficient abstraction of a
set of objects, called field extensions, defined as the set of field values appearing
in any of the objects in the set [25]. Thus, instead of counting the number of
different objects achieved by a candidate, the fitness function will compute the
field extensions as objects are generated, and return the number of field values in
the extensions. Intuitively, a higher number of field values in the field extensions
means that the builders can be used to construct a more diverse set of objects,
and therefore they should be preferred over other sets of builders.

We assess our approach experimentally on a benchmark of stateful Java
classes drawn from the literature. The results show that in our case studies our
approach identifies sets of routines that are sufficient and minimal, in a reason-
able time. We also assess the impact of our approach in an automated analysis,
namely, in the generation of test cases for parameterized tests. We compare how
the random test case generation tool Randoop behaves when fed with the full
module API, against providing the tool with only the builders identified by our
approach. The results indicate that in the latter case Randoop generated more
(and larger) objects, within a fixed time budget.

2 Motivating Example

In this section, we motivate our approach by means of a running example. The
Apache NodeCachingLinkedList (NCL for short) [36] consists of a main circular
doubly linked list, that holds the elements of the collection, and a secondary
singly linked list that acts as a cache for nodes that have been removed from
the main list. Nodes stored in the cache can be reused, and added again to
the main list when inserting elements in the main list. Thanks to its cache, in
applications where insertions and removals from the list are very frequent, NCL
can significantly reduce the overhead needed for memory allocation and garbage
collection of nodes. As an illustration, Figure 1 shows the three NCL instances
that can be built with exactly two nodes.

NCL has a very rich API, as shown in Table 1. However, for building any
feasible NCL object only a few methods from the API suffice. For example,



Fig. 1. Three NodeCachingLinkedList instances with exactly two nodes

No. Return type Method name Obs?
0 NCL() no
1 NCL(int) no
2 NCL(Collection) no
3 boolean add(Object) no
4 void add(int,Object) no
5 boolean addAll(Collection) no
6 boolean addAll(int,Collection) no
7 boolean addFirst(Object) no
8 boolean addLast(Object) no
9 void clear() no
10 boolean contains(Object) yes
11 boolean containsAll(Collection) yes
12 boolean equals(Object) yes
13 Object get(int) yes
14 Object getFirst() yes
15 Object getLast() yes
16 int indexOf(Object) yes

No. Return type Method name Obs?
17 boolean isEmpty() yes
18 Iterator iterator() no
19 int lastIndexOf(Object) yes
20 ListIterator listIterator() no
21 ListIterator listIterator(int) no
22 Object remove(int) no
23 boolean remove(Object) no
24 boolean removeAll(Collection) no
25 Object removeFirst() no
26 Object removeLast() no
27 boolean retainAll(Collection) no
28 Object set(int,Object) no
29 int size() yes
30 List subList(int,int) no
31 Object[] toArray() yes
32 Object[] toArray(Object[]) yes
33 String toString() yes

Table 1. Apache’s NodeCachingLinkedList API

combinations of the methods in Figure 1.1, when instantiated with appropriate
parameters, can be used to build any desired (finite) NCL object. Thus, the
methods therein are an example of a sufficient set of builders. Notice that, after
using the constructor, the main list of NCL can be populated just by using the
addFirst method. However, if we want to generate instances where the cache is
not empty, we can do so through the removeFirst method, as the sufficient set
of builders suggests. For most automated analyses, we would like to consider as
varying scenarios (inputs) as possible, hence the motivation to build sufficient
sets of builders. Furthermore, the builders in Figure 1.1 are also minimal, since
the lack of any one of them would imply that some NCL’s objects cannot be
constructed anymore with the routines.

Notice that there can be many sets of sufficient and minimal builders. For
example, we get sufficient and minimal builders by replacing addFirst in Fig-



(0 ) NodeCachingLinkedList ( )
(7 ) addFirs t ( Object )
(25) removeFirst ( )

Figure 1.1. A sufficient set of builders for NCL

(3 ) add ( Object )
(4 ) add ( int , Object )
(7 ) addFirs t ( Object )
(8 ) addLast ( Object )

Figure 1.2. Add variants that can be used to populate NCL’s main list

ure 1.1 with any of the other add variants shown in Figure 1.2, as for any way
of filling up NCL’s main list with addFirst there exists a different way to build
the same object using another add variant (perhaps invoked with different pa-
rameters and changing the execution order).

We also observe that the simpler the parameters of a routine, the easier to use
the routine is for generating inputs in the context of a program analysis. For in-
stance, among the alternative add routines for NCL (Fig. 1.2), add(int,Object)
receives more parameters than the other three methods, therefore it is harder to
generate parameters for it when generating inputs. This makes the other three
alternatives preferred over it. Thus, our approach takes into account the number
of parameters and their complexities for selecting the best possible builders.

Many methods in Table 1 are marked as observers (column Obs?), meaning
that they do not modify the objects they operate on, nor they are useful for
creating non-primitive objects. Hence, observers are always superfluous, and
should never be included in a set of minimal builders. Our approach tries to
recognize them beforehand, and discards them from the search to significantly
reduce the search space.

To conclude this section we remark that, when fed with the whole NCL’s API,
our approach automatically identified the sufficient and minimal set of builders
for NCL shown in Figure 1.1.

3 Background

3.1 Field extensions

The idea behind field extensions [25] is to define a representation for a set of
objects that is smaller in size and easier to manipulate algorithmically. This
representation implies some loss of information, but for certain applications (like
the one in this paper) they are precise enough to be useful in practice [26, 25,
29, 12, 1].

Given a set S of objects, its field extensions representation consist of a set
of pairs for each field f, such that (obj,val) belongs to the field extensions of f if
obj.f = val (i.e., the value of f for obj equals to val), for some object obj in S.



head = (L0, null), (L0, N0)
cache = (L0, null), (L0, N1), (L0, N0)
next = (N0, N1), (N1, N0), (N0, N0), (N1, null)
prev = (N0, N1), (N0, N0), (N1, null), (N0, null)

Figure 1.3. Field extensions for the set of instances in Figure 1

As an example, consider the instances displayed in Figure 1. Its corresponding
field extensions are shown in Figure 1.3. We omit the values stored in the nodes
for the sake of clarity. Notice that structure (a) in Figure 1 can be built using
only add methods, whereas for (b) and (c) we have to also employ some kind of
remove operation, to move nodes from the main list to the cache. Notice that
values (L0, N0) and (L0, N1) for the cache field only appear in the field extensions
when the structures have nodes in the cache, like (b) and (c). In addition, prev
fields of nodes in the cache are always null, but prev fields can never be null
in the main list (due to its circularity). This means that field extensions for
structures that have non-empty caches have the potential of having a larger
number of values than those for structures with no caches.

It is important to canonicalize structures before computing field extensions [12].
Canonicalization involves assigning unique identifiers N0, N1, ... to each of its
nodes during a traversal of the structure (we employ a breadth first traversal),
starting at the root. Nodes visited first receive smaller identifiers than those
visited afterwards during the traversal. Fields must be visited in a fixed order.
Note that structures in Figure 1 are all in canonical breadth-first form.

3.2 Random test case generation

Random test generation consists of randomly producing inputs in order to test
software [8, 24, 21]. Random input generation is straightforward when consid-
ering basic (numeric) data types, but producing inputs of other more complex
types, in particular instances of stateful classes, is less obvious and calls for a
more complex mechanism, other than just using random number generators. One
such mechanism, that has been implemented by various tools for random test
generation for object-oriented code, is based on randomly combining method
sequences, that produce inputs of different types [8, 24, 21]. The process associ-
ated with the Randoop tool [24] that we use here, works essentially as follows.
For every datatype, a set of sequences that produce inputs of such datatype, is
maintained. To start with, for basic data types, a set of initial values is consid-
ered, and for class types, only null is considered at first (these can be considered
test sequences of size one). The procedure to build a new test sequence starts
by randomly selecting a method m, among all methods in the software under
test. For example, one could randomly choose one of the methods for the NCL’s
API (Table 1), say add(Object). To actually build the test sequence, values for
each of the parameters of the method m, of the corresponding types, have to
be provided. These are obtained by randomly selecting test sequences, from the



sets of sequences of the corresponding types, and sequentially composing them,
with method m as a last statement. As an example, say that a sequence con-
taining only the constructor of NCL is randomly selected, from the available
sequences for the NCL type, and for the parameter of add, an Integer with value
0 is randomly chosen. Combining all these sequences together results in:

NodeCachingLinkedList l = NodeCachingLinkedList ( ) ;
l . add (new In t eg e r ( 0 ) ) ;

This new sequence can now be stored for later use a as parameter for other
methods that operate on NCL objects.

This process is repeated until either a time budget is exhausted, or the desired
number of tests (set by the user) is generated. Randoop uses guidance from the
execution of tests to avoid generating illegal tests. We refer the interested reader
to the article introducing Randoop [24], for further details.

An important issue to remark here is that the execution of each test sequence
generated by Randoop produces a number of objects for the given type (NCL in
the example). We exploit this characteristic of Randoop to compute the fitness
function for a set of methods, although instead of storing actual objects we will
maintain field extensions, as we explain in more detail in Section 4.

4 An Evolutionary Algorithm for Identifying Sufficient
Object Builders

As mentioned before, to find a sufficient set of builders from a program API we
design a genetic algorithm, that we describe below. Genetic algorithms [14] are
non-exhaustive guided search algorithms, based on a hill climbing strategy [30].
The search space is composed of a generally very large set of individuals (the
candidates), and the search objective is to find an individual with sought-for
features. As opposed to classic search algorithms, genetic algorithms maintain
a set of individuals, called the population, and search progresses by iteratively
selecting a number of individuals in the population, using these for evolution
(building new individuals out of these), and leaving out some individuals of the
whole set (the “old” ones and the “new” ones). Selection of individuals for popu-
lation evolution, as well as individuals’ removal, are guided by a fitness function,
the heuristic function used to guide the search. This function applies to individ-
uals, and its result is generalizable to the population too (e.g., the fitness of the
population may be taken as the fitness of its “fittest” individual). This function
captures the features sought for in the search, and thus can be used as a halting
criterion (e.g., algorithm stops after finding an individual with fitness above a
certain threshold). Finally, individuals are often called chromosomes, and repre-
sented as vectors of genes that capture their characteristics. This idea is strongly
related to how new individuals are constructed: by representing candidates as
vectors of independent characteristics, one can build new candidates by combin-
ing part of the characteristics of an individual with part of the characteristics of
another, or by arbitrarily changing a characteristic of a given individual. These



two forms of evolution are called crossover and mutation, respectively, and are
the traditional mechanism to build new candidates out of existing ones in genetic
algorithms. For further details, we refer the reader to [22].

4.1 Chromosome Representation

In the context of our problem, candidate solutions represent sets of methods
from the API of the module being analyzed. We then employ vectors of boolean
values as chromosome representation. Let n be the number of methods in the
API; the chromosomes in our algorithm will be vectors of size n. For any vector,
the i-th position is true if and only if the chromosome contains the i-th method
of the API. For example, there are 34 methods in the NCL’s API (Table 1), and
we enumerated them from 0 to 33. The sufficient set of builders in Figure 1.1
is characterized by the vector with positions 0, 7 and 25 set to true, and the
remaining positions set to false. In this case, the whole search space consists of
the 234 possible chromosomes.

4.2 Fitness Function

Given a chromosome representing a set of methods M , our fitness function com-
putes an approximation of the number of bounded objects that can be built
using combinations of methods in M . Chromosomes with higher fitness values
are estimated to build more objects than those that have smaller fitness values.

Ideally, we would like to explore all the feasible objects within a small bound
k, that can be built using the methods of the current chromosome, i.e.,BE(M,k).
In other words, we need a bounded exhaustive generator for the set of methods.
The bound k represents the maximum number of objects that can be created for
each class (in Figure 1, the number of nodes in the NCL objects are bounded
by k = 2), and the maximum number of primitive values available (for example,
integers from 0 to k− 1). For this purpose, we developed a prototype modifying
the Randoop tool, discussed briefly in Section 3.2. First, we altered Randoop to
work with a fixed set of primitive values (integers from 0 to k − 1). (Normally,
Randoop would save primitive values that are returned by the execution of tests,
and reuse these values in future tests.) Second, we make Randoop drop sequences
of methods that create objects with more than k objects (of any type), to stop
it from building objects larger than needed. To achieve this, we canonicalize the
objects generated by the execution of each sequence, and we discard the sequence
if some object has an index equal or larger than k. Third, we extend Randoop
with “global” field extensions, and when the execution of a sequence terminates
all the field values of the objects generated by the sequence are added to the field
extensions. For example, if Randoop had generated the objects in Figure 1, then
the global field extensions would have the values shown in Figure 1.3. Our goal
is that, given a bound k, when our modified version of Randoop terminates the
global field extensions contain all the field values of the bounded exhaustive set
of structures with up to k nodes, BE(M,k). The result of the fitness function for



(0 ) NodeCachingLinkedList ( )
(7 ) addFirs t ( Object )
(8 ) addLast ( Object )
(25) removeFirst ( )

Figure 1.4. A set of sufficient but not minimal builders for NCL

(0 ) NodeCachingLinkedList ( )
(4 ) add ( int , Object )
(23) remove ( Object )

Figure 1.5. Sufficient and minimal builders for NCL with more complex parameters
than the ones in Figure 1.1

the chromosome is the number of field values in the global extensions computed
by the tool.

Our rationale for using bounded sets of objects is akin to the small scope
hypothesis for bug finding [2]: if one set of methods cannot be used to build
small objects that allow to differentiate it from another set of methods, then
it is unlikely that these two sets can be distinguished with larger objects. This
hypothesis held during our empirical evaluation across all our case studies.

We found that, besides being affected by chance, our tool rarely misses build-
ing objects that should add relevant values to the global extensions, when small
values for k are employed.

Choosing Better Sets of Builders In this section, we propose two ways to
improve our evolutionary algorithm by tailoring the fitness function to obtain
better sets of builders. This is strongly motivated by the way builders are used
to build inputs in program analysis. On the one hand, if we have two sufficient
set of builders, the set with the smaller number of methods should always be
preferred. In this context, there is no reason to include superfluous methods in
builders. For example, the builders in Figure 1.4 can be used to create the same
NCL objects as the builders in Figure 1.1 of Section 2 (both sets are sufficient),
but they are not minimal since addLast is superfluous.

On the other hand, builders with more parameters, or more complex ones,
are more taxing on program analysis, as they require more effort to be ade-
quately instantiated. Thus, we define a simple criterion of parameter complexity
and adapt our fitness to favor builders with simpler parameters over the more
complex ones. For example, both sets of builders in Figures 1.1 and 1.5 are suf-
ficient and minimal (with 3 routines each), but builders in Figure 1.5 have more
parameters that need to be instantiated. Comparing Figures 1.1 and 1.5 we can
observe that addFirst has been replaced by add, which has an additional in-
teger parameter, and that removeFirst was interchanged with remove, which
possesses a non-primitive parameter of type Object. Following the criteria ex-
plained above, we would like our algorithm to choose the set in Figure 1.1 over
that of Figure 1.5.



Incorporating these ideas, the fitness function of our approach is defined by:

f (M) = #fieldExt (M)+w1 ∗
(
1− #M

#MT

)
+ w2 ∗

(
1− (#PP (M)+w3∗RP (M))

(#PP (MT )+w3∗RP (MT ))

)
w1 + w2


For a chromosome representing a set M of methods, drawn from the whole

set of available methods of the API, MT , the most important part of the fitness
for M , is the number of values in the field extensions, #fieldExt(M), that can
be generated using our custom Randoop tool as explained in the previous sec-
tion. The summand on the right implements the ideas presented in this section.
It returns a real value in the interval [0,1] that is useful to break ties for sets
of methods that generate field extensions with the same number of values. In
the dividend, the first summand penalizes sets with larger numbers of methods,
by computing the quotient of the number of methods in M to the number of
methods in MT , and subtracting the result to 1. Constant w1 (w1 ≥ 1) allows
us to increase/decrease the weight of this summand with respect to the other
summand. The second summand in the dividend penalizes sets of methods with
more complex parameters. Similarly to w1, constant w2 (w2 ≥ 1) serves the pur-
pose of increasing/decreasing the weight of this factor in the sum. Notice that
we sum up the parameters differently depending on their types: each primitive
parameter adds 1 (PP (M) is the number of primitive parameters in the methods
of M), and each reference parameter adds a constant w3 (w3 ≥ 1, RP (M) is the
number of reference-typed parameters in the methods of M), which allows us to
increase the weight of reference parameters with respect to primitive ones. Intu-
itively, the whole right-hand summand computes the ratio between the number
of parameters of M (with added weight for reference parameters) to the number
of (weighted) parameters for MT . The result is then subtracted from 1. Finally,
we divide by w1 + w2 to obtain the desired number in the interval [0,1].

In our experimental assessment we set w1 = 2, w2 = 1, w3 = 2. These values
were good enough for our approach to produce sufficient and minimal sets of
builders in all our case studies.

It is important to remark that the presented criteria for choosing better
builders is based on the kind of program analyses we target (generation of tests
cases for parameterized tests, software model checking). New criteria can be
defined with other goals in mind, and our approach can be adapted to support
them by modifying the fitness function as we did in this section.

4.3 Overall Structure of the Genetic Algorithm

The previously described elements are the constituting parts of the genetic
algorithm implementing our approach. A pseudocode of the genetic algorithm
is shown in Algorithm 1. Notice that Algorithm 1 follows the general structure
of a genetic algorithm. The initial population is generated by producing all the



Algorithm 1 Genetic Algorithm implementing our approach
1: pop← chromosomes with exactly one true gene
2: for i = 1...numEvo do
3: pop← keep the popSize fittest chromosomes from pop
4: for j = 1...cRate ∗ popSize do
5: c1, c2← select two random chromosomes from pop
6: new ← single point crossover c1, c2
7: add new to pop
8: end for
9: for c ∈ pop do
10: new ← mutate each gene of c with probability mRate
11: if new 6= c then
12: add new to pop
13: end if
14: end for
15: end for
16: result← fittest chromosome of pop

feasible chromosomes with only one available method (vectors with false in all
positions except one, set to true) (line 3). Then, it starts to iteratively evolve
the population (lines 4-15). At the beginning of each evolution iteration, the
algorithm discards some individuals to control population size, by keeping the
popSize fittest individuals of the current population and discarding the rest (line
5). Then, the algorithm performs single-point crossover on randomly selected in-
dividuals (lines 6-10). Crossover is applied a number of times that is proportional
to the population size popSize, determined by the product of popSize and the
crossover rate parameter cRate (0 ≤ cRate ≤ 1). Then, the algorithm mutates
individuals (lines 11-15) by changing the value of each of its genes with proba-
bility mRate (0 ≤ mRate ≤ 1). Any newly created individual by the crossover
and mutation operations are added to the population.

The algorithm stops after numEvo evolutions, with numEvo a parameter of
the algorithm. Notice that, we don’t have a target value for our fitness, since an
untried set of methods might produce a larger number of field extensions than
the algorithm has currently seen. Again, there is a compromise to be made for
choosing a good value for numEvo: a larger number increases the precision of
the algorithm but increases its running time, whereas a smaller number makes
it run faster but it might not result in the best set of builders.

As usual, we found a number for the parameters of our algorithm that seems
to work well in practice. In our experimental evaluation, we set numEvo =
20, popSize = 30, cRate = 0.35,mRate = 0.08 (the last two are the default for
the JGap library).

Most of Algorithm 1 is a default evolutionary implementation of the JGap
Java library [37]. Notice that, if we take away the complexity of the fitness func-
tion, our evolutionary algorithm is rather standard, so it is not surprising that
an existing implementation works well for our purposes. Of course, improve-



ments to the evolutionary algorithm, and fine tuning for its parameters (e.g.,
crossover/mutation rate) might yield faster execution times.

We also implemented a simple multi-threaded version of our approach, that
helps improving its performance. Basically, at each iteration we make t copies of
the current population, where t is the number of available threads, and evolve
each of the population replicas independently of the others. After all the threads
have finished, we keep the 100/t fittest individuals of the population evolved by
each thread, and use them to build the population for the next iteration of the
algorithm.

4.4 Reducing the Search Space by Observers Classification

We say a routine is an observer if it never modifies the parameters it takes,
and never generates a non-primitive value as a result of its execution. Column
Obs? in Table 1 (Section 2) indicates whether each NCL method is an observer
or not. Clearly, an observer cannot be used to modify nor build new objects,
and therefore can never belong to a minimal set of builders. Hence, if we can
classify them correctly beforehand, we can remove the observers from the search
to significantly reduce the search space, without losing precision. For example, in
the NCL API (Table 1) there are 13 observers out of 34 methods, so by removing
observers we prune more than one third of the search space.

To detect observers we run another customized Randoop version before our
evolutionary algorithm. This time, we check for each method whether it modifies
its inputs at each test sequence generated by Randoop involving the method,
by canonicalizing the objects before and after execution of the method, and
checking if the field values of the objects change after execution. If this is the
case, the method is marked as a builder (not an observer). For return values, if
in any test sequence generated by Randoop the method returns a non-primitive
value, then we mark it as a builder as well. We run this custom Randoop until
it generates a large number of scenarios for each method. Ten to twenty seconds
was enough for our case studies. At the end of the Randoop execution, methods
not marked as builders are considered observers and discarded before invoking
the evolutionary algorithm.

Other approaches exist for the detection of pure methods [15, 31] (similar to
our observers). Note that our evolutionary algorithm is not dependent on the
method classification algorithm, so any of them could be useful for our purposes.

5 Experimental results

In this section, we experimentally assess our approach. The evaluation is based on
a benchmark of data structure implementations, including: NCL from Apache Col-
lections [36]; BinaryTree, BinomialHeap, FibonacciHeap, RedBlackTree taken
from [35]; UnionFind, an implementation of disjoint sets taken from JGrapht
[38]. We also evaluate our technique on components of real software projects



such as Lits from the implementation of Sat4j [3], taken from [20], which con-
sists of a variable store that monitors when a guess was last made about a value
of a variable, and whether listeners are watching the state of that variable; and
Scheduler, an implementation of a process scheduler taken from [10]. All the
experiments were run on 3.4GHz quad-core Intel Core i7-6700 machines with
8GB of RAM, running GNU/Linux.

The evaluation consists of two parts. First, we ran our approach (Algorithm
1) on the whole module APIs of the aforementioned classes, to compute sets of
builders for each case study. The goal is to assess how good are the builders
identified, and the time it takes our approach to compute them. For each case
study we ran our approach 5 times. The results are shown in Table 2, includ-
ing the number of routines in the whole API (#API), a sample of identified
builders (some methods might be interchanged in different runs, e.g., addFirst
and addLast in NCL), and the average running time (in seconds) of the 5 runs.
We manually inspected the results, and found that the automatically identified
sets of builders were in all cases sufficient (all the feasible objects for the structure
can be constructed using the builders) and minimal (do not contain superfluous
methods). The approach is reasonably efficient, taking about 30 minutes in the
worst case.

The second part of the evaluation regards how helpful are the identified
builders in the context of a program analysis, namely, the automated generation
of test cases. These objects might be used, for example, as inputs in parameter-
ized unit tests. For the case studies that provide mechanisms to measure the size
of objects and to compare objects by equality (i.e., the size and equals meth-
ods of data structures), we generated tests with Randoop using all the methods
available in the API (API), and then we generated tests with Randoop using
only the builder methods (BLD) identified by our approach in the previous ex-
periment (Table 2). We then compare the number of different objects (No. of
Objs.), and the size of the largest object (Max Obj. Size) created by the tests
generated from the API, against the tests generated using methods from BLD
only. We set three different test generation budgets: 60, 120 and 180 seconds
(Budget). The results are summarized in Table 3. In addition, we consider an-
other approach, API+, that involves the generation of tests using the API for
a budget that encompasses the test generation budget (Budget) plus the time
it takes our approach to identify builders for the corresponding case study. The
results show that in the same test budget BLD generates in average 1280% more
objects than API. Furthermore, when builders identification time is added to the
test generation budget for API (API+), BLD can generate 568% more objects
in average (w.r.t API+). In all cases, BLD also generates significantly larger
objects than API and API+. In view of these results, it is clear that automated
builders identification pays off for the automated generation of structures for
stateful classes.

The experiments can be reproduced by following the instructions in the paper
website [27]. Furthermore, in the site we experimentally show that the builders



Sample Builders Time

NCL NCLinkedList(int)
addFirst(Object) 1744

#API: 34 removeFirst()

UFind UnionFind()
addElement(int) 215

#API: 9 union(int,int)

FHeap FibonacciHeap()
insert(int) 72

#API: 7 removeMin()
RBT TreeMap()
#API: 8 put(int) 73
BTree BinTree()
#API: 7 add(int) 73
BHeap BinomialHeap()
#API: 10 insert(int) 121

Lits

Lits()
getFromPool(int)
forgets(int) 1229

#API: 26 setLevel(int,int)
setReason(int)

Sched.
Schedule()
addProcess(int)

#API: 10 blockProcess() 377
quantumExpire()

Table 2. Builders computation
results

Budget Max Obj. Size No. of Objs.
API BLD API+ API BLD API+

NCL 60 8 16 11 1442 42021 13119
#API: 34 120 8 18 11 2423 69017 13247
#BLD: 3 180 9 18 11 3166 91647 13505
UFind 60 8 13 9 3388 34250 8351
#API: 9 120 9 13 9 5180 56418 8574
#BLD: 3 180 9 13 9 6695 74425 9387
FHeap 60 11 15 12 6989 32639 11499
#API: 7 120 12 17 13 11447 54264 17202
#BLD: 3 180 12 17 13 15344 72413 20775
RBT 60 8 15 8 1812 23034 3041
#API: 8 120 8 15 8 2678 35635 3698
#BLD: 2 180 8 15 8 3358 44807 3940
BTree 60 8 15 8 3600 24908 6019
#API: 7 120 8 15 8 5471 39239 7387
#BLD: 2 180 8 15 9 6975 50671 9247
BHeap 60 9 26 10 3874 65915 8076
#API: 10 120 10 29 10 5970 111402 9708
#BLD: 2 180 10 29 11 7638 147260 10606
Table 3. Assessment of using the identified
builders (BLD) vs the whole API (API) in test
case generation. API+ involves test case gener-
ation with the whole API, with budget = (Bud-
get + builders computation time)

identified by our approach can be employed to build efficient drivers for software
model checking. We don’t show these results here due to space constraints.

6 Related Work

As mentioned throughout the paper, the problem of identifying sufficient builders
is recurrent in various program analyses, including but not limited to software
model checking and test generation. In works like [23, 18], in the context of
software model checking, and [33, 32, 24, 5], in the context of automated test
generation, and just to cite a few, the problem of identifying part of an API and
provide it for analysis is present. Typically the problem is dealt with manually.

The use of search-based techniques to solve challenging software engineering
problems is an increasingly popular strategy, which has been applied successfully
to a number of problems, including test input generation [11], program repair
[19], and many others. As far as we are aware of, this is a novel application of
evolutionary computation in software engineering. An approach that tackles a
related, but different, problem, is that associated with the SUSHI tool [5]. The
aim with SUSHI is to feed a genetic algorithm with a path condition, produced
by a symbolic execution engine, so that an input satisfying the provided path
condition can be reproduced using a module’s API. This approach assumes that
the API (or the subset of relevant methods) is provided, as opposed to our work,
that precisely tackles the provision of the restricted API.

Our technique requires a mechanism for identifying observers, which we have
solved within the work in the paper, resorting to random test generation, and in-



strumentation for state monitoring. Approaches to the identification of observers,
or more precisely pure methods, exist in the literature [15, 31]. Regarding these
lines of work, notice that the focus of our evolutionary algorithm is not the
identification of observers, but the construction of minimal and sufficient set of
builders. Moreover, our approach is in fact independent of the mechanism used
to identify observers/pure methods, and thus could be combined with the works
just cited (i.e., replacing our random testing based approach by an alternative
one).

7 Conclusions

In this work, we presented an evolutionary algorithm for automatically detecting
sets of builders from a module’s API. We assessed our algorithm over several case
studies from the literature, and found that it is capable of precisely identifying
sets of builders that are sufficient and minimal, within reasonable running times.
To the best of our knowledge, this is the first work that addresses this problem,
which is typically dealt with manually.

We also showed preliminary results indicating that our approach can be ex-
ploited by test case generation tools to yield larger and more diverse objects.
Other techniques, like software model checking, can benefit as well by using the
identified set of builders to automatically construct efficient drivers. More exper-
imentation needs to be done, but given the results in this paper our approach
looks very promising.

One of the biggest challenges of this work was the construction of a tool to
allow us to generate all the bounded structures, for a given maximum number k
of objects, from the methods of the program API. The proposed solution worked
well enough for our case studies, but avoiding randomness in the process would
be desirable. Using bounded exhaustive generation tools rather than random
generation would better fit our purposes [4], but unfortunately none of the tools
for bounded exhaustive test generation produce inputs from a module’s API.
We believe that a promising research direction, that we plan to further explore
in future work, is to adapt our presented approach for bounded exhaustive test
generation.

Some aspects of our genetic algorithm can be further improved. For instance,
a more powerful classification for argument types, in the prioritization of meth-
ods according to their complexities, can be defined. Moreover, one may also
incorporate other dimensions, such as code complexity, to favor simpler meth-
ods. We will explore this direction as future work. Also, our genetic algorithm
implementation is, for most parts, a default evolutionary implementation of the
JGap Java library [37]. Of course, improvements to the evolutionary algorithm,
and fine tuning for its parameters (e.g., crossover/mutation rate) might yield
faster execution times, so we plan to investigate this further in future work.
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